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Abstract: Using avariational approach, we obtained the interaction potential between two
discrete solitons in optical waveguide arrays. The resulting potential bears the two features of
soliton-soliton and soliton-waveguide interaction potentials where the former is similar to that
of the continuum case and the latter is similar to the effective Pierls-Nabarro potential. The in-
terplay between the two interaction potentials is investigated by studying its effect on the soliton
molecule formation. It is found that the two solitons bind if their initial separation equals an odd
number of waveguides, while they do not bind if their separation is an even number, which is
a consequence of the two solitons being both either at the intersites (unstable) or being onsite
(stable). We derived the equations of motion for the solitons’ centre of mass and relative separa-
tion and provided analytic solutions for some specific cases. Favourable agreement between the
analytical and numerical interaction potentials is obtained. Possible applications of our results
to all-optical logic gates are pointed out.
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1. Introduction

Interaction forces between solitons have been extensively studied in the continuum regime [1–3]
as they cause data transfer errors in optical fibres [4]. It is well-established that, at large sepa-
rations, the force between two solitons decays exponentially with their separation and is pro-
portional to the cosine of their phase difference which was first found by Gordon [2]. The
complete form of the potential was then found to be a Morse potential type [5]. Stable soliton
molecules were shown to exist in dispersion-managed optical fibres [6–8]. In matter-wave con-
densates with dipolar interactions, it is believed that real binding between solitons can make
a soliton molecule [9, 10]. Bright soliton trains were observed in attractive Bose-Einstein con-
densates [11–13] followed by a variational calculation that accounted for the repulsive force
between the out-of-phase solitons [14].

Discrete solitons, such as optical solitons in waveguide arrays or matter-wave bright solitons
of a Bose-Einstein condensation in an optical lattice, show distinctive features in comparison
with their continuum counterparts [15,16], such as multiple pulses binding [17], mobility thresh-
old [18], discrete self-trapping [19], bistability [20], collisions [20,21], and the presence of the
so-called Pierls-Nabarro (PN) effective potential [22–25]. The PN potential is an oscillatory po-
tential with minima located at the waveguides and maxima located between waveguides. The
former case corresponds to a stable on-site soliton while the latter corresponds the unstable
inter-site soliton. Existence of stationary solitons, their mobility, and interaction have been well-
studied [15, 16, 26, 27]. A general approach for deriving effective potentials of interaction be-
tween solitons was presented in [28]. The discrete nonlinear Schrödinger equation, was solved
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using variational, perturbative, and numerical approaches [29–31]. Specifically, the height of
the PN potential for highly localised nonlinear modes was calculated in Ref. [32] and the two
on-site and inter-site stationary states were obtained in Ref. [33]. The profile of the PN potential
has been obtained in Refs. [32,34] .

Interactions between discrete solitons in a waveguide array are expected to exhibit some
unique features arising from the interplay between the soliton-soliton interaction on one hand,
and the solitons interaction with the waveguides on the other hand. It is well-known, for instance,
that the mobility of a single soliton will be significantly reduced at high speeds by the PN po-
tential. The essential question we address here is how the soliton-soliton interaction potential
will be affected by the presence of the PN potential. Specifically, we aim at obtaining an ana-
lytic formula that gives this potential in much the same manner as Gordon’s formula describes
the interaction between solitons in the continuous case. To that end, we employ a variational
calculation with a gaussian trial function which facilitates obtaining compact analytic results.
Other trial functions, such as the kusp-like [33] or the hyperbolic secant functions cannot lead
to analytic formula for the potential. The theoretical formula we derive here will be compared
with the exact interaction potential calculated numerically where good agreement is obtained.
In both cases, the significant feature we obtain is the modulation of the oscillatory PN poten-
tial to the decaying tail of the interaction potential at large solitons’ separation. This leads to
the important result of discrete spontaneous soliton molecule formation. In the continuum case,
two stationary solitons with a finite separation may spontaneously attract and form a soliton
molecule. In the present case, discrete solitons form a molecule only for specific separations.
While the solitons form a molecule for odd integer initial soliton separation, they do not so for
even integer separation.

Finally, the effect of the soliton-soliton and soliton-waveguide interactions on their dynamics
is investigated.

The rest of the paper is organised as follows. In Section 2, we perform the static variational
calculation, estimate the two solitons interaction potential, and then compare our results with the
potential obtained numerically. In Sec. 3 we discuss the formation of a two solitons molecule.
In Sec. 4, we perform a time-dependent variational calculation to study the dynamics of the two
solitons. We end up in Section 5 by summarising our main results.

2. Interaction potential

2.1. Variational approach

Our approach in obtaining the interaction potential is to derive the equation of motion for the
separation between solitons. The force of interaction, which is the second temporal derivative of
the solitons separation, can then be calculated and integrated (summed) to obtain the potential.

The dynamics of discrete solitons is described by the discrete nonlinear Schrödinger equation
(DNLSE)

i
∂

∂t
ψn + d(ψn+1+ψn−1 − 2ψn) + γ |ψn |2ψn = 0, (1)

whereψn is the field amplitude at then-th lattice site,d andγ are positive strengths of the
dispersion and nonlinearity, respectively. The lagrangian corresponding to this DNLSE is given
by

L =

∞
∑

n=−∞

[

i

2
(ψ∗

nψ̇n −ψnψ̇
∗

n) + dψ∗

n(ψn+1 +ψn−1 − 2ψn) +
γ

2
|ψn |4

]

, (2)

where the last two terms define the energy functional

E = −
∞
∑

n=−∞

[

dψ∗

n(ψn+1 +ψn−1 − 2ψn) +
γ

2
|ψn |4

]

, (3)
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andψ̇n denotes the derivative ofψn with respect to time.
For the static properties, a trial function with minimal number of variational parameters will

be adequate, namely the two solitons separation,∆n, and their phase difference∆φ. Thus, our
trial function for the two solitons, takes the form

ψn = A e
−

(n−n1)2

η2 +iφ1
+ A e

−
(n−n2)2

η2 +iφ2
, (4)

where the centres of the two solitonsn1 andn2 define the separation∆n = n1− n2 and similarly,
the phase difference is defined as∆φ = φ1−φ2. Clearly, our trial function is simplified by setting
the two solitons to have the same amplitude, with no centre-of-mass speeds, and without width
breathing and chirp. This situation corresponds to two stationary equal solitons with initially
zero relative speed.

For stationary equal amplitude solitons, the centre of mass is always at the mid point between
the solitons. Expressions below will be simplified in the frame of reference centered at the
midpoint, namely,n1 + n2 = 0. Normalizing the total powerP (or number of atoms in the
context of matter-wave solitons)

P =

∞
∑

n=−∞

ψ∗

nψn (5)

we obtain the solitons amplitude in terms of their width

A =

√
P

√√
2π η

[

ϑ3(∆n π/2, q)+ ϑ3(0, q) exp
(

− (∆n)2

2η2

)

cos(∆φ)
]

, (6)

whereq = exp (−π2η2/2) andϑ3(z , q) is the Jacobi theta function defined byϑ3(z , q) =
∑

∞

n=−∞
qn2

e2inz. The potential of interaction between the two solitons, which equals the en-
ergy functional (apart from a pre-factor that can be set to unity, as explained in Sec. 4) is then
calculated as

V = −d EK −
γ

2
EI , (7)

where

EK = 4A2

√

π

2
η

[

ϑ3 (−π(∆n − 1)/2, q) exp

(

−1

2η2

)

− ϑ3(π ∆n/2, q)

+

(

ϑ3(π/2, q) exp

(

−1

2η2

)

cosh (
∆n

η2
) − ϑ3(0, q)

)

exp

(

− (∆n)2

2η2

)

cos(∆φ)

]

, (8)

EI = A4√π η
[

ϑ3
(

π ∆n/2,
√
q
)

+ ϑ3
(

0,
√
q
)

exp

(

−(∆n)2

η2

)

(2+ cos (2∆φ))

+ 4ϑ3
(

π∆n/4,
√
q
)

exp

(

−3(∆n)2

4η2

)

cos(∆φ)

]

. (9)

Since the soliton typically extends over several waveguides, i.e.,η > 1, the quantityq =
exp (−π2η2/2), which is the argument of the Jacobi function, will be much less than one. In this
case, we can simplify the energy functional by expanding inq around zero, leading to

V [∆n, ∆φ(∆n)] = V0 +
P

4
√
πη

[

Pγ + 8
√
π η y d

(

1− cosh (∆n/η2)
)]

exp

(

− (∆n)2

2η2

)

cos∆φ

+ P

(

8d y +
Pγ
√
π η

)

q cos(π ∆n) (10)
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where we have defined the noninteracting solitons energy as

V0 = 2Pd (1− y) − P2γ

4
√
π η

(11)

andy = exp (−1/2η2). Interestingly, the interaction between solitons given by Eq. (10) is the
sum of a molecular type soliton-soliton interaction (zeroth order term) and their interaction
with the waveguide (the first order term) characterised by an oscillatory dependence on solitons
separation. In fact, this corresponds to the Pierls-Nabarro potential of the two solitons. Being a
first order contribution, the oscillatory part will have a noticeable effect only near the tail region
of the potential. Another interesting feature of the oscillatory contribution is its dependence on
whether solitons separation∆n is an even integer, odd integer, or a half integer. For the integer
case, both solitons are either at the minima or the maxima of the PN potential. If both are
at the minima, the two solitons will be stable against centre of mass perturbations preventing
spontaneous solitons binding unless they are too close such that their zeroth order interaction
overcomes this small PN barrier. For the even integer case, both solitons are located initially at
the maxima of the PN potential. They will be unstable and both solitons will eventually fall to
the next minimum of the PN potential, which takes us back to the odd integer case. The situation
is very different when∆n is half integer, which corresponds to one of the solitons being at the
minimum of the PN potential, while the other is at the maximum. While the former is stable,
the latter is not. Any small perturbation will cause the latter soliton to move which changes the
solitons separation and leads to spontaneous binding. The sensitivity of spontaneous binding to
discreteness is a unique feature of solitons interacting in a waveguide array and is not present
in the continuum case. In Sec. 2.2, this behavior will be confirmed numerically.

The phase difference between solitons changes while the solitons approach each other. To
find how∆φ depends on solitons separation, we ought to perform a time-dependent variational
calculation where equations of motion for∆n(t) and∆φ(t) will be derived from their equations
of motion. Time will then be eliminated in order to obtain∆φ(∆n). As a rough approximation, a
constant phase difference may be set for, say in-phase solitons,∆φ = 0, or out-of-phase solitons,
∆φ = π. For the in-phase option, the solitons will have their minimum energy for zero separa-
tion, which means that no molecular type binding will take place. For the out-of-phase case, a
repulsive part exists in the energy functional giving rise to a molecular type potential with a
finite bond length. However, when compared with the exact numerical solution, the bond length
and energy will be very different from the exact ones. In reality, the situation is none of these
two simple cases; the phase difference changes with their separation and we need to include that
dependence in order to account for the exact potential, at least within a reasonable approxima-
tion. Performing the time-dependent variational calculation will not be helpful for this purpose
due to the complicated equations of motion that do not allow for obtaining analytical solutions
for ∆n(t) and∆φ(t), let alone the yet harder problem of eliminating time between them. Our ap-
proach for finding∆φ(∆n) will be guided by the numerical solution described in the next section.
Specifically, we will show that∆φ(∆n) behaves as∆n−4 for ∆n around the potential well. For
larger separations,∆φ decays exponentially as exp(−∆n/η). The former behavior is responsi-
ble for obtaining the correct molecular part of the potential around the equilibrium bond length
with good estimates for the bond length and strength. The latter, has a negligible contribution
in the region near the equilibrium bond length. Besides, it should be noted that the cos∆φ term
appearing in the potential, (10), multiplied by either exp

(

−(∆n)2/2η2
)

or q = exp
(

−π2η2/2
)

,
both of which are very small in the tail region. Thus, consistent with the first order expansion in
(10), we may take

∆φ(∆n) =
c

∆n4
, (12)

wherec is a constant to be determined from the boundary condition on∆φ(∆n f ), ∆n f is the
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shortest bond length as will be shown in the next section.
Finally, the equilibrium soliton width,ηeq, is accurately calculated by minimizing the energy

functional of a single soliton with respect toη, namely∂Es/∂η
∣

∣

∣ηeq
= 0, whereEs is the energy

of a single soliton, given byEs = V0(P/2). We divideP by 2 sinceV0 corresponds to the energy
of two infinitley separated solitons.

2.2. Numerical calculation

Here, we use the alternative approach to find the interaction potential between two solitons by
calculating numerically the solitons separation, from which the force and potential of interaction
are determined. At first, we calculate the stationary profile of the two solitons for a given initial
separation. The Newton-Raphson method is used, and the result for one specific case is shown
in Fig. 1. We plot also in this figure the variational trial function, (4), for the same parameters,
to see that it makes a good representation of the exact solution. It is of course known that the
gaussian function does not describe accurately the tail which decays exponentially. For solitons
extending over several waveguides, the gaussian represents accurately the exact profile, but for
narrow solitons, obtained with smallγ or larged, the gaussian is not a good representation of
the exact solution especially in the tail and overlap regions.

Having found the stationary profile, we evolve it in time by solving the time-dependent
DNLSE, Eq. (1). The two solitons attract and approach each other until they coalesce, then
they repel but come back and coalesce again and so on, as shown in Fig. 1. This is very similar
to the continuum case, but with some significant differences that will be pointed out in the next
section. Calculating numerically the solitons separation∆n(t), then differentiating twice to get
the force between the two solitons

F =
d2

dt2
∆n(t) (13)

the potential is then obtained by integrating the force with respect to∆n(t)

V = −
∫

∆n f

∆ni

F(∆n) d(∆n). (14)

The limits of the integration range from the initial arbitrary separation∆ni to the shortest final
separation∆n f . Larger values of∆ni are desirable since they will allow for a determination
of the tail of the potential for large separations. However, for too large initial solitons separa-
tion, they may not bind due to the weakness of their interaction and the presence of the PN
potential. The final solitons separation∆n f can not be less than the solitons shortest approach
separation which is of the order of one soliton width, namelyηeq. Numerically, we run the time
evolution code until the two solitons reach their first coalescence. This will give the potential
in the region [∆ni , ∆n f ]. In Fig. 2, we show the force, potential, and phase difference curves.
Interestingly, the small PN potential oscillatory part of the potential is clearly visible in the tail
of the otherwise molecular type potential.

An important feature that Fig. 2 shows is the dependence of the phase difference on solitons
separation. Attempting to find this functional behaviour, we considered three cases with dif-
ferent initial separations. We had to change the strength of the nonlinear interaction for each
case such that the soliton width is large enough to allow for an overlap and interaction. We
plot in Fig. 3 the phase difference curves versus the solitons separation on a log-log and semi-
log plots. The log-log plots show that for most of the solitons separation range, the behaviour
is non-polynomial, except near the shortest separation region where the curves are linear with
slope equal to−4. The semi-log curves show that the behaviour is in fact exponential for most
of the range, except near short separations. To confirm that the behaviour for short separations
is not exponential, we plot also∆φ × (∆n)4 versus∆n to see that indeed for the range between
∆n ≃ 2.5 and∆n ≃ 5.5 the curves are almost constant on the average and start decaying beyond
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∆n ≃ 5.5 where the exponential decay starts to dominate. As discussed in the previous section,
the ∆n−4 behaviour takes place in the important region of the potential, namely its minimum
where the bond length and strength will be determined. For this reason we approximate the func-
tional dependence of the phase separation by the∆n−4 law, as given by Eq. (12). The numerical
curves of the phase difference show that at the phase difference between the two solitons at
their shortest separation equalsπ/2. The proportionality constant,c, is thus determined from
the boundary condition∆φ(η f ) = π/2. We estimate the shortest separation,η f , by the single
soliton width,η0, since the two solitons merge at the coalescence point. Therefore, the constant
c is determined by

c

η4
eq
=
π

2
. (15)

Sinceηeq is obtained from the single soliton energy, the only input that the numerical calcu-
lation supplies to the variational one is theπ/2 value at the shortest separation. Calculatingc

for the three cases considered, we plot in Fig. 3 the power lawc/(∆n)4 together with the corre-
sponding numerical curves which show excellent agreement especially in the short separation
region, as expected.

Finally, we use the power law for the phase difference dependence on separation in the in-
teraction potential formula, (10), and compare the resulting potential curve with the numerical
one, as shown in Fig. 4. Qualitative agreement is obtained with a molecular type of potential.
As discussed previously, there is no significant effect of not taking into account the exponential
decay of the phase difference. This is evident from the very good agreement between the theo-
retical and numerical curves in the tail region. The agreement on the bond length and strength
can be enhanced by considering the full energy functional given by Eqs. (7-9). Figure 4 shows
that the full variational approach captures most of the features of the exact numerical potential.
The oscillating tail, which is clearly visible in the numerical curve, is present in the theoretical
one but with much less amplitude due to the fact that the gaussian ansatz is not accurate in the
tail region, as shown in Fig. 5. It decays much faster than the exponential, hence the suppression
of the amplitude of the PN oscillations.

The essential feature that the PN potential introduces is the discreteness in the spontaneous
soliton molecule formation. This is shown in Fig. 6 where spontaneous solitons binding does not
necessarily always occur for shorter solitons separations. While the solitons bind for∆ni = 13,
they do not bind for∆ni = 10. Since we took the centre of our frame of reference between the
two solitons such thatn1 + n2 = 0, the first initial solitons separation∆ni = 13 corresponds to
n1 = 6.5 andn2 = −6.5. However, in Fig. 6, we shift the centre of mass of the two solitons
to the middle of the waveguide array, which is an integer value of 60. Thus the solitons in this
case are initially entered at 66.5 and 53.5. Solitons at the intersites are unstable,therefore the
two solitons in this case were able to bind. In the case of shorter initial separation,∆ni = 12,
the two solitons are on-site at 66 and 54. The PN potential is minimum there preventing the two
solitons from binding.

3. Solitons binding

In this section, we discuss the possibility that the interaction between two solitons bind them in a
molecule-like structure. This problem has been considered by Ref. [17] focusing on the stability
of the bound states. Here, we have a different focus, which is the effect of the PN potential on
the spontaneous formation of the bound state. We have shown in previous sections that the
interaction potential between discrete solitons is indeed of a molecular type. Thus, solitons
binding is anticipated. However, it is well-known in the continuum case that the binding energy
between solitons is zero, which means that the bond is highly unstable against perturbations
[29,30]. The situation for discrete solitons is similar with the exception of a certain region in the
parameter space where the PN potential can stabilise the bond. Stabilising the, otherwise fragile,
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Fig. 1. Left: Initial stationary two solitons’ profile as obtained by numerical solution of
the DNLSE, Eq. (1), (black lines with dots) and the variational trial function (red line).
Right: Spacio-temporal density plot of the evolution of the initial state on the left panel.
The parameters used are:γ = 1, d = 0.38, initial separation∆n(0) = 13,P = 2

bond between the solitons is known in dispersion-managed fibers [6] and dipolar condensates
[9], where atruebond between the solitons exists to form atrue soliton molecule.

There are two distinct regimes for the interaction between discrete solitons. The first is a
continuum-like where the width of the solitons is considerably larger than the separation be-
tween waveguides. In this case, the discrete nature of the solitons is almost absent and, as
mentioned above, the binding between solitons is fragile since any small perturbation can break
the bond. The second regime is when the solitons width is comparable to just few waveguides.
For the discreteness of the soliton to have tangible effect and for the PN potential to have a sig-
nificant role, the separation between the two solitons should be large enough so that the strength
of the interaction between solitons be of the order of the PN potential. Therefore, one needs to
search in the three parameters space: strength of nonlinearity,γ, dispersion,d, and solitons ini-
tial separation,∆n(0). Largeγ or smalld take the solitons deeper in the discrete regime which
leads to higher PN potential. The initial separation controls the strength of the interaction be-
tween solitons. Inspection of these parameters leads us to find a regime where the PN potential
results in real binding between the solitons. In the following we present the evidence for the
latter through several numerical experiments. In Fig. 7, we plot the separation of two solitons
located initially at the minima of the PN potential (integer values of solitons centres). Clearly,
the solitons initially attract each other but then repel due to the presence of the PN barrier be-
tween them. While this shows that the solitons indeed interact, it may not be an evidence that
they are bound to each other, i.e., the solitons may separate once one of them is given a kick. To
test this possibility, we have given a velocity kick to only one of the solitons and looked for a
situation where the other one followed. Indeed this is what we find in Fig. 8, where the soliton
on the right was initially kicked. Clearly the soliton on the left followed. However, the velocity
kick should not be too large since otherwise there will be not enough time for the left soliton
to respond. The key feature in this figure is that the two solitons move for a considerable time
over many waveguides overcoming many PN potential maxima, which proves that it is a real
binding and real molecule. Due to the pinning nature of solitons flowing in waveguide arrays
the solitons speed decrease to reach the critical mobility speed at which the solitons will be
pined either separately or after being coalesced.

Coalescence of solitons is known in the continuum case, however, solitons then split again.
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Fig. 2. Force (upper), potential (middle), and phase difference (lower panel) between the
two solitons considered in Fig. 1.

Discrete solitons may also do the same, as seen for instance in Fig. 1, but for certain values
of the parameters, the solitons may be pinned by one waveguide after coalescence, as shown
in Fig. 9. This feature may be useful for applications of waveguide arrays in performing logic
operations. Specifically, the process in Fig. 9 represents an AND gate where the two inputs
correspond to the two initial solitons and the output is taken from the waveguide at their middle.
The output will be 1 only when both solitons are present, and will be zero otherwise.

4. Equations of motion and dynamics

In this section we use a time-dependent variational calculation to derive the equations of motion
for the two interacting solitons. It is aimed at obtaining further insight into the mechanism of
binding as well as the peculiarities in their dynamics resulting from discreteness.

Unlike the static variational calculation in Sec. 2.1, we need here to include the two addi-
tional degrees of freedom of the center of mass motion and breathing. It is important to include
breathing, which requires the inclusion of chirp, in order to account for the repulsion at short
separations, since otherwise the two solitons will always coalesce. The trial function takes the
form

ψn = A e
−

(n−n1(t ))2

η(t )2
+ik1(t )(n−n1(t ))+iβ(t )(n−n1(t ))2+iφ1(t )

+A e
−

(n−n2(t ))2

η(t )2
+ik2(t )(n−n2(t ))+iβ(t )(n−n2(t ))2+iφ2(t )

.

(16)
It is instructive to define the variational parameters of the single solitons in terms of their
relative and centre of mass analogues, as follows:
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Fig. 3. Phase difference between two solitons for three different values of initial separation
and nonlinearity strength. The parameters for the lowest curve are:∆ni = 13,γ = 1, for
the middle curve:∆ni = 15,γ = 0.9, and for the upper curve:∆ni = 19,γ = 0.7. For all
curves:d = 0.38 andP = 2. Blue lines correspond to the numerical calculation and the red
lines correspond to the power law fit∆φ = c/(∆n)4, wherec for each curve was determined
by the condition (15).

n0(t) = n1(t) + n2(t), ∆n(t) = n1(t) − n2(t),

k0(t) = k1(t) + k2(t), ∆k(t) = k1(t) − k2(t),

φ0(t) = φ1(t) + φ2(t), ∆φ(t) = φ1(t) − φ2(t),

(17)

Calculating the lagrangian given by Eq. (2) using this trial function, we obtain

L =
P

4

[(

k0ṅ0 + ∆k ∆ṅ − η2β̇ − 2φ̇0

)]

−V . (18)

HereV is the generalization of the soliton-soliton interaction potential, Eq. (10), to the case
with center of mass momentum,k0, relative momentum,∆k , breathing,η, and chirp,β, namely

V = Vss +Vsw (19)

where we have decomposed the interaction potential into a soliton-soliton part

Vss = V0[k0, ∆k , β, η]+
P

4
√
πη

[

P γ + 8
√
π d η exp

(

− 1

2η2

) (

1− cosh

(

∆n

η2

))]

exp

(

− (∆n)2

2η2

)

cos∆φ

(20)
and a soliton-waveguide part

Vsw = P

[

8d exp

(

− 1

2η2

)

+
Pγ
√
π η

]

exp

(

−π
2η2

2

)

cos(π ∆n) cos (π n0), (21)
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Fig. 4. Interaction potential between two discrete solitons. Black solid curve corresponds
to the full variational calculation, Eq. (7), dashed curve corresponds to the approximate
formula Eq. (10), and the red curve corresponds to the numerical solution. Parameters used
are:γ = 1, d = 0.5, P = 2.

Fig. 5. Zoom-in of Fig. 4 in the tail region. Red dashed curve corresponds to the PN poten-
tial.

with

V0 = 2Pd

[

1− exp

(

−
1

2η2

)

cos

(

k0

2

)

cos

(

∆k

2

)]

−
P2γ

4
√
π η

, (22)

and we have assumed the limit∆n ≫ η. It should be noted that Eq. (19) is identical to Eq. (10),
apart from the new definition ofV0, as given now by Eq. (22).
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Fig. 6. Spatio-temporal density plots showing the two solitons time evolution for different
initial separations. Parameters used are:γ = 1, d = 0.38,P = 2.

Fig. 7. Two solitons located initially at the minima of the PN potential (n1 = 54, n2 = 66).
We have usedγ = 1.0, d = 0.4.

4.1. Equations of motion

Insight into the solitons interaction and dynamics can be obtained from the reduced equations
of motion where large soliton widths and separation are considered. Soliton width should not be
considerably larger than unity in order to be in this limit. Terms containing exp (−π2η(t)2/2) are
already much smaller than unity forη(t) of order unity. Terms containing exp (−∆n(t)2η(t)2/2)
are also very small for values of∆n(t) just several times larger thanη(t). Within these limits,
the equations of motion simplify to

ṅ0 = 2d exp

(

−π
2η2

2

)

cos

(

∆k

2

)

sin

(

k0

2

)

, (23)

∆ṅ = 2d exp

(

−η
2β2

2

)

sin

(

∆k

2

)

cos

(

k0

2

)

, (24)

k̇0 = −
4
P

dVsw

dn0
, (25)
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Fig. 8. Two solitons located at different initial separations and the right soliton in each
subfigure was given an initial velocity kick of 0.115. We have usedγ = 1.0, d = 0.4.

Fig. 9. Two solitons located initially at the maxima of the PN potential (n1 = 53.5, n2 =

66.5).γ = 1.0, d = 0.4.

∆k̇ = − 4
P

(

dV ss

d(∆n)
+
dV sw

d(∆n)

)

. (26)

Differentiating Eq. (24) with respect to time and using Eqs. (25) and (26), a reduced equation
of motion for the solitons separation can be derived, in the limit of small speeds and chirp

∆n̈ = −4d
P

dV

d(∆n)
. (27)

The right hand side of this equation gives the force of interaction between the solitons. Their
interaction potential is thus (4d/P)V , which according to Eq. (19) is composed of the soliton-
soliton and soliton-waveguide interaction potentials. This potential is plotted against the exact
numerical one as discussed earlier and shown in Fig. 4. The figure shows hat the variational
calculation accounts reasonably to the strength and length of the bond between the solitons
(depth and location of minimum of the potential well). Note that we selected the parameters of
Fig. 4 such that the prefactor 4d/P is unity, which means that the interaction potential between
solitons (4d/P)V , as inferred by Eq. (27), equals the energy functionalV given by Eq. (7).
There are two distinguished limits where specific solutions can be obtained, namely when the
two solitons are close enough such thatVss ≫ Vsw and separated enough such thatVss ≪ Vsw .
In the former case, the dynamics of the separation between solitons is similar to that of a single
particle in the potential well ofVss , which can with some simplifications be sinusoidal. The
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solutions in this case are oscillatory around zero, which indicates that solitons coalesce, as
for instance, in Fig. 1. In the latter case, the solution is oscillatory but around a finite value.
Specifically, the equation of motion will take the form

∆n̈ = c sin(π ∆n), (28)

wherec = 4π d
[

8d exp
(

−1/(2η2)
)

+ Pγ/(
√
π η)

]

exp
(

−π2η2/2
)

and we have assumed, with-
out loss of generality,n0(t) = 0. The solution of Eq. (28) is the Jacobi amplitude function

∆n(t) = 2 am

(

1
2

√

c1 − 2c (x + c2)2,
4c

2c − c1

)

, (29)

wherec1 andc2 are two arbitrary constants, determined by the initial conditions. The solitons
separation described by this solution remains constant for a while before rather quick transi-
tion to a separation that is shorter by two waveguides which corresponds to a hopping of both
solitons to the adjacent waveguide between the solitons.

Similarly, an equation for the centre of mass can be derived

n̈0 = −
4d
P

dVsw

d(∆n)
. (30)

SubstitutingVsw from Eq. (21), this equation will have essentially the same solution as (29).
This shows, together with Eq. (25), that the centre of mass dynamics is driven only by the
soliton-waveguide interaction.

5. Conclusions

We have used the variational approach with a gaussian trial function to obtain the interaction
potential between two discrete solitons. The main features of the interaction potential are the
co-presence of the soliton-soliton molecular type of interaction together with a periodic part
stemming from the interaction between the solitons and the waveguide array, namely the PN
potential. The periodic part of the interaction is more visible near the tail region of the potential
where it has also the maximum effect on the features of the soliton, as it is the case for example
in the spontaneous soliton molecule formation. If the two solitons were initially located with a
separation where the PN potential has a noticeable effect, the solitons bind only when their sep-
aration is an odd number. This is consistent with the previous knowledge about onsite discrete
solitons being stable against centre of mass perturbations while intersite solitons being unstable
and become mobile for any perturbation. In the two solitons case, an odd integer separation
corresponds to the two solitons being at the intersites (taking their centre of mass to be onsite),
and thus unstable. This allows for their soliton-soliton interaction to bind them. For even integer
separations, the two solitons are stable and the soliton-soliton interaction has to exceed a finite
threshold before being able to bind them. The effects of the PN potential on the soliton-soliton
interaction diminish when the two solitons are initially located either too far or too close. In
such a case, the interaction potential reduces to its continuum value.

We have used a time-dependent variational calculation to derive the solitons equations of
motion. The interaction potential was recalculated from the equation of motion of the solitons
separation. Specific solutions in the limit of large separation were also obtained analytically.

It is expected that other unique features related to the mobility of the two solitons and their
scattering and interaction with external potentials may exist, their investigation will be left for
future work.
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